- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0011000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Qiu, Ri-Zhao (2)
-
Hauser, Kris (1)
-
Marques, Joao Marcos (1)
-
Sun, Yixiao (1)
-
Wang, Xiaolong (1)
-
Yang, Ge (1)
-
Zeng, Weijia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 17, 2025
-
Qiu, Ri-Zhao; Sun, Yixiao; Marques, Joao Marcos; Hauser, Kris (, Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems)Disinfection robots have applications in promoting public health and reducing hospital acquired infections and have drawn considerable interest due to the COVID-19 pandemic. To disinfect a room quickly, motion planning can be used to plan robot disinfection trajectories on a reconstructed 3D map of the room’s surfaces. However, existing approaches discard semantic information of the room and, thus, take a long time to perform thorough disinfection. Human cleaners, on the other hand, disinfect rooms more efficiently by prioritizing the cleaning of high-touch surfaces. To address this gap, we present a novel GPU-based volumetric semantic TSDF (Truncated Signed Distance Function) integration system for semantic 3D reconstruction. Our system produces 3D reconstructions that distinguish high-touch surfaces from non-high-touch surfaces at approximately 50 frames per second on a consumer-grade GPU, which is approximately 5 times faster than existing CPU-based TSDF semantic reconstruction methods. In addition, we extend a UV disinfection motion planning algorithm to incorporate semantic awareness for optimizing coverage of disinfection trajectories. Experiments show that our semantic-aware planning outperforms geometry-only planning by disinfecting up to 20% more high-touch surfaces under the same time budget. Further, the real-time nature of our semantic reconstruction pipeline enables future work on simultaneous disinfection and mapping. Code is available at: https://github.com/uiuc-iml/ RA-SLAMmore » « less
An official website of the United States government

Full Text Available